
Text2Synth: A Generative Audio Plugin 
Proposal Overview: I will be building a VST3 audio plugin that utilizes machine learning to generate 
synth presets based on a text prompt. All of the machine learning will be done using PyTorch within 
Google Colab Pro. I have moved beyond simple architectural investigation and settled on a cross-modal 
architecture that bridges text and synthesizer parameters. Specifically, I am utilizing Residual 
Feed-Forward Networks to map semantic embeddings to knob values, leveraging the LAION-CLAP 
model to interpret semantic inputs. 

Additionally, I will utilize LibTorch to translate everything into JUCE, where I will be using C++ to build 
the main plugin frontend and backend. This project will provide me with a base knowledge of machine 
learning, as well as cementing my knowledge of real-time audio processing in C/C++. I will use my own 
private library of 22,000 Serum .fxp files to train my model. 

Technical Implementation Strategy: To achieve the connection between text and audio, my 
implementation follows a three-stage pipeline that I have already begun validating. 

First is Data Ingestion. I am parsing my dataset of 22,000 .fxp files using DawDreamer (a Python VST 
render engine). Unlike standard parsing, I am rendering "Smart Sweeps"—brief audio clips of every 
preset—to capture the true sonic character of the synth. I then use LAION-CLAP (Contrastive 
Language-Audio Pretraining) to generate vector embeddings of these audio clips. This allows the model 
to understand the relationship between a prompt like "warm analog pad" and the actual timbre of the 
sound, rather than relying solely on text metadata. 

Second is the Model Architecture. I am training the model in PyTorch to predict synthesizer parameter 
values based on the input CLAP embeddings. Instead of a standard VAE, I am utilizing a Generator with 
Residual Blocks. This architecture takes the text embedding vector and passes it through a series of dense 
layers with residual connections, allowing the network to learn complex, non-linear mappings between 
language and synthesizer knob positions without suffering from vanishing gradients. 

Third is the C++ Integration. I will build a subtractive synthesizer engine in JUCE that mirrors the 
parameter structure of my training data (matching oscillators, envelopes, and filters). I will then export 
my trained PyTorch model to TorchScript and load it inside the plugin using LibTorch. When a user types 
a prompt, the model will run inference in real-time and update the synthesizer knobs instantly. 

Mentorship: To support the multidisciplinary nature of this project, I have identified three mentors to 
serve as technical references for the audio, machine learning, and mathematical components, respectively. 

●​ Digital Signal Processing (DSP) & Audio Programming: I will consult with Professor Mike 
Frengel from Northeastern University’s Music Technology department. His academic background 
in audio programming will be a key resource for designing the architecture of the subtractive 
synthesis engine and ensuring C++ best practices within the JUCE framework. 



●​ Machine Learning Engineering: For PyTorch integration, I will consult Ethan Wee, a software 
engineer at AMD currently working directly on the PyTorch framework. His industry-level 
knowledge of the library will be invaluable for troubleshooting the complex integration of 
LibTorch within a real-time audio environment. 

●​ Mathematical Theory: For theoretical verification, I will consult Jemma Schroder, a PhD 
candidate in Pure Mathematics at the University of Texas at Austin. Her expertise will be utilized 
to review the mathematical soundness of the neural network architectures and the linear algebra 
involved in the tensor transformations. 

Project Goals: My goal is to have a rudimentary audio plugin that generates synth presets based on a 
user's text prompt. It will not be state of the art, as I am just one person working on this in a short 
timeframe. However, given the amount of training data I have, I believe that I can build something 
functional that works as I described. I will focus on the core functionality of the prediction pipeline first, 
prioritizing a stable build that does not crash the Digital Audio Workstation (DAW) over complex sound 
design features. I will likely have to adjust my scope to account for the computational constraints of 
real-time audio, potentially simplifying the neural network architecture or the synthesizer engine if the 
CPU overhead becomes prohibitive. 

Specific success metrics include: 

●​ Successfully loading the LibTorch model within a JUCE environment without build errors. 
●​ Achieving a loss rate during training that indicates the model is learning distinct categories of 

sounds rather than outputting random noise (overcoming "Mode Collapse"). 
●​ Creating a user interface that allows for text entry and displays the resulting parameter changes 

visually. 

Project Resources: I will utilize my Google Collab Pro account to access the A100 GPU for training my 
model, as well as Google Gemini to debug and help me when I get stumped. Additionally, I will use MIT 
open course ware such as their Intro to ML notes, and YouTube videos that I will cite in my final LaTeX 
report. 

I will also be using Open Source Software (OSS) to facilitate the development: 

●​ DawDreamer: To load VST plugins in Python, render audio sweeps, and extract parameter values 
from the .fxp files correctly. 

●​ LAION-CLAP: To tokenize text and generate audio embeddings, bridging the gap between 
language and sound. 

●​ JUCE Framework: For the cross-platform audio plugin architecture. 
●​ LibTorch: The C++ distribution of PyTorch for running the model within the plugin. 

Risk Management: There are several technical risks associated with this project that I have accounted for. 
The primary risk is the file size and performance overhead of LibTorch, which can be heavy for a 
real-time audio thread. To mitigate this, I will run the inference (the prediction calculation) on a 
background thread so that the audio stream is never interrupted, preventing clicks and pops. A secondary 
risk is the "Black Box" nature of neural networks, where the model might output chaotic or silent 



parameters. I will implement "safety clamping" in my C++ code to ensure that the generated values 
always stay within valid, audible ranges (e.g., ensuring volume does not exceed 0dB). 

Project Timeline: 

●​ Week 1-2: Data Preparation. Writing Python scripts using DawDreamer to batch process the 
22,000 .fxp files. This involves accurately extracting knob data and rendering audio sweeps for 
embedding generation. 

●​ Week 3-5: Model Training. Developing and training the model in Google Colab. I have allocated 
extra time here to experiment with hyperparameters and ensure the Residual Block architecture 
converges properly without mode collapse. 

●​ Week 6-8: C++ Audio Engine. Building the subtractive synthesizer in JUCE. This includes 
programming the oscillators, filters, envelopes, and modulation routing that the model will 
control. 

●​ Week 9: Integration. Connecting the trained PyTorch model to the C++ engine using LibTorch. 
This involves handling the complex linking process between the Python-exported model and the 
C++ environment. 

●​ Week 10: UI Implementation. Building the frontend interface, specifically the text input field, and 
mapping the backend parameter changes to visual knobs and sliders. 

●​ Week 11: User Testing. Distributing the beta version of the plugin to a small group of users to 
identify bugs, test stability across different DAWs, and verify that the text prompts produce 
expected sonic results. 

●​ Week 12: Final Polish and Report. Fixing bugs found during testing, optimizing CPU 
performance, writing the final LaTeX report, and organizing the GitHub repository for public 
release. 

Project Deliverables: 

1.​ A functional VST3 audio plugin that generates synth presets from a text prompt, with a 
straightforward UI and parameters to manipulate the preset. 

2.​ A LaTeX report, outlining my entire process for this project, including mathematical explanations 
of the model used. 

3.​ A GitHub repository that contains the entire project in full so it is available for anyone to access 
online. 

4.​ A short demo video demonstrating the text-to-sound workflow to prove functionality. 

 


	Text2Synth: A Generative Audio Plugin 

